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A generative adversarial 
network‑based abnormality 
detection using only normal images 
for model training with application 
to digital breast tomosynthesis
Albert Swiecicki1*, Nicholas Konz1, Mateusz Buda2 & Maciej A. Mazurowski1,2

Deep learning has shown tremendous potential in the task of object detection in images. However, 
a common challenge with this task is when only a limited number of images containing the 
object of interest are available. This is a particular issue in cancer screening, such as digital breast 
tomosynthesis (DBT), where less than 1% of cases contain cancer. In this study, we propose a method 
to train an inpainting generative adversarial network to be used for cancer detection using only 
images that do not contain cancer. During inference, we removed a part of the image and used the 
network to complete the removed part. A significant error in completing an image part was considered 
an indication that such location is unexpected and thus abnormal. A large dataset of DBT images 
used in this study was collected at Duke University. It consisted of 19,230 reconstructed volumes from 
4348 patients. Cancerous masses and architectural distortions were marked with bounding boxes by 
radiologists. Our experiments showed that the locations containing cancer were associated with a 
notably higher completion error than the non‑cancer locations (mean error ratio of 2.77). All data used 
in this study has been made publicly available by the authors.

Deep learning methods have been shown to be highly successful in the analysis of medical  images1. However, 
typically a large amount of data is needed to train accurate models. The collection of a large numbers of cases is 
particularly challenging when attempting to work with rare diseases. In screening populations, the prevalence 
of some diseases can be as low as 1%, resulting in a large number of normal exams, yet very few exams depicting 
abnormalities. One of the domains where we can observe such low prevalence is mammography, imaging exams 
intended to detect breast cancer in otherwise healthy women. Based  on2, only 9812 out of 1,682,504 screening 
mammograms examinations performed between 2007 and 2013 consisted of cancerous alternations, resulting 
in an approximately 0.6% ratio between positive and negative test results. The three-dimensional, more modern 
form of mammography, called digital breast tomosynthesis (DBT) may find a slightly larger number of cancers 
since it provides better lesion visibility when compared with analog mammography or full-field digital mam-
mography (FFDM)3. However, the prevalence of abnormal results remains very low.

Such imbalance in the training dataset causes significant problems when training deep learning algorithms 
and has been shown to negatively affect model  performance4. In detection tasks, training difficulty already arises 
from the very limited number of images that contain abnormalities, but as in the case of mammography, this is 
made even worse when combined with the fact that the abnormalities themselves occupy relatively small parts 
of the images. Therefore, in order to make some sort of meaningful training progress, it becomes crucial to 
effectively utilize images that do not contain abnormalities, which are available in abundance.

Current supervised deep learning-based detection algorithms are not well-designed to take advantage of 
images that do not contain abnormalities. Images without abnormalities are used in anomaly detection algorithms 
where models try to learn data distributions and, based on normal data, try to predict unusual behaviors. One of 
the approaches to utilizing images with no abnormalities is to extract feature representation from normal data 
before training models with rare abnormal data. The most popular ways of extracting features generally (1) use 
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a compression-decompression network called an autoencoder5,6or (2) involve generative adversarial networks 
(GANs) to learn data  distributions7,8.

Our hypothesis is that breasts, similarly to many other objects, have a certain expected structure visible within 
images. Radiologists learn this structure by viewing thousands of breast images. Once structure is learned, an 
abnormality can be detected as a location where the tissue looks different than expected. Following this hypoth-
esis, we propose to simulate this phenomenon using a computer algorithm. Specifically, we developed an algo-
rithm that is able to fill in a missing part of an image, at a given location, with what is expected based on the rest 
of the image and based on what the algorithm has seen in tens of thousands of other images that don’t contain 
abnormalities. A state-of-the-art generative adversarial network (GAN) is used for this image completion task. 
A recent  study9 have shown that image completion algorithms are able to complete images with high-quality 
patches consistent with their  surroundings9. Then, if the expected image at this location is different from the 
actual image, the location is considered suspicious.

The purpose of this research is to determine whether the model trained on data without abnormalities will 
have difficulty with reconstructing previously unseen abnormal structures. The hypothesis is validated on a set 
of 70 digital breast tomosynthesis images containing cancerous lesions, by measuring completion error inside 
and outside of bounding boxes and visualizing model losses in the form of heatmaps.

While GANs have been previously used in the context of anomaly  detection10, we are familiar with only one 
study that uses neural network-based image completion for this purpose. Specifically, in a study conducted by 
Haselmann et al.11, mean-squared error (MSE) was incorporated with a GAN to perform image completion 
(inpainting) abnormality detection, showing promising results but only on a relatively easy task. In this study, 
the difference between the original image and the completed image (measured by MSE) was used to determine 
whether a particular location is likely to be abnormal. Here, we extend this study by applying the concept into 
much more challenging space of medical imaging, introducing a newer attention model for image  completion9 
and evaluating the performance of the model using different mask sizes, model input sizes, and losses on non-
trivial medical data.

This study has multiple contributions in terms of its technical aspect and the application. It is the first study 
that attempts to use image completion for abnormality detection in the context of medical imaging. This comes 
with a variety of challenges including high resolution images (approximately 50 times more pixels in an image 
than  in11. We also introduce the generative image inpainting with contextual attention  model9 in the context of 
anomaly detection. Additionally, we use the discrimination loss measure to determine abnormal-looking loca-
tions in the context of image completion. Finally, we explore the impact of hyperparameters, such as the field of 
view and mask size, on the performance of the algorithm.

Methods
Dataset. In this study, we used a dataset of digital breast tomosynthesis (DBT) screening studies gathered 
from the Duke Health System. It contained 4829 studies collected from 4348 patients resulting in 19,230 recon-
struction volumes. There are two types of cases within the study: (1) normal and (2) cancer. For the cancer group, 
lesion bounding boxes were provided by radiologists from Duke Hospital. In the normal group, every study 
consists of left and right cranial-caudal (CC) and mediolateral-oblique (MLO) views. Studies in the cancer group 
consist of one or more CC or/and MLO views. Studies with spot compression were not included in our dataset.

The normal set was randomly divided (by patient) into two exclusive training and validation sets with 18,232 
and 928 reconstruction views respectively. In addition, we used 70 volumes from the cancer group to evaluate 
our algorithm in the context of abnormally detection. Six cases where the abnormality was contained within a 
small distance (128 pixels) from the edge of the image were removed to arrive at the 70 used volumes. From each 
volume in the normal set (training and validation), we took five random slices/images. From cancer set volumes 
we only used the slice where radiologist placed a bounding box; if more than one abnormality was marked (which 
occurred in eight volumes), we selected one slice randomly from the subset of marked slices. The number of 
cases used for training, validation and testing are shown in Table 1. All data used in this study will be made 
publicly available on The Cancer Imaging Archive. The retrospective clinical data collection was approved by the 
Institutional Review Board (IRB) of the Duke University Health System (DUHS), and the methods used in this 
study were carried out in accordance with relevant guidelines and regulations. The requirement for informed 
consent was waived by the DUHS IRB.

Generative adversarial networks. Generative adversarial networks (GANs) introduced  in7, are based 
on the idea of two networks competing with each other. One of the networks is responsible for the generation 
of “fake” training data that appears to be real, by learning to approximate the distribution that generated the real 
training data. This network is called a generator, denoted G(z) , because it takes a vector of random noise z as 
input, and maps it to a generated datapoint (image, in our case). The second network, called the discriminator, or 

Table 1.  Data used during experiments.

Set Type Patients Studies Volumes Slices/images

Train Normal 4109 4558 18,232 91,160

Validation Normal 200 232 928 4640

Test Cancer 39 39 70 70
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critic, is used to distinguish between generated and true samples. It is labeled D(x) , as the network takes a sample 
x and outputs the probability of x being from the real dataset. The competition between the two networks can be 
described as a min–max game of two players trying to beat each other, described in Fig. 1.

GANs with multiple convolutional layers are called deep convolutional GANs (DCGANs)8 and are used 
amongst other methods for the generation of realistic  images12, image  denoising13, image  translation14 and image 
 completion9. Image completion is often performed using generators of architecture similar to  autoencoders15, 
which foster learning a latent representation of the data. Latent data representation is achieved by compressing 
and decompressing input data in the way which minimizes information decline. Figure 2 demonstrates sample 
autoencoder architecture.

Image completion task and the architecture. In the task of image completion, a part of an image is 
covered and the model attempts to reconstruct it based on the parts of the image that are present. We assume that 
the missing part of the image, the mask, is square, and we refer to the size of the missing part as the mask size. We 
approached the task of image completion using DCGAN architecture with a two-phase generator followed by 
local and global  discriminators9. In order to train the image completion model, we cover part of the image and 
recreate the covered part using the generator, based on the remainder of the image. We then use the discrimina-
tor to estimate the probability of the generated patch being real.

The architecture of the model and a diagram of the image completion process are shown in Fig. 3. In the 
first stage of the generator, a coarse network constructed from dilated convolutional blocks is used to create an 
imperfect, blurred prediction for the missing patch of the image. The second part of the generator, the refinement 
network, improves the quality of the completed region with more fine-grained details using combined contextual 

Figure 1.  A standard GAN architecture and loss function.

Figure 2.  Autoencoder architecture.

Figure 3.  Model architecture and image completion process diagram.
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attention and dilated convolutional branches. The contextual attention branch, created  by9, optimizes consistency 
between the inferred missing patch and the rest of the surrounding image, hereafter the field of view, by examin-
ing the inner product/cosine-similarity of features within the generated missing patch and features found in the 
surroundings. Local and global discriminators are responsible for achieving consistency between the completed 
masked region and the entire image. We experimented with the following parameters: (i) a mask size of 64 × 64 
and 128 × 128 pixels, and (ii), a field of view of 256 × 256 and 512 × 512 pixels. To obtain the same dimensionality 
of feature representation for both of the tested field of view sizes, we append a convolutional layer to the input 
of the global discriminator module when the field of view size is 512 × 512 pixels.

Training details. While the min–max objective that dictates the training of GANs (Fig. 1) is conceptually 
simple, in practice training GANs to give usable results is a difficult task. The goal of generative modeling is 
essentially to make the “fake” data distribution that the generator learns to sample from, Pg , as similar as possible 
to the real data distribution Pr . However, if one tries to do this using common distribution divergence/distance 
metrics, such as the Kullback–Leibler (KL) divergence, that are usually used to train GANs, this optimization 
procedure is often practically difficult, due to issues such as discontinuities and/or vanishing gradients within the 
objective function with respect to the network’s parameters, that can occur when a real sample is not within the 
support of Pr . The Wasserstein distance, described shortly, was proposed as a solution to these  problems16, and 
is a key component of our model’s loss function.

The Wasserstein distance between two distributions can intuitively be thought of as the minimal effort needed 
to transport probability mass between these distributions; it is theoretically defined as

where �
(
Pr , Pg

)
 is the set of all distributions γ whose marginal distributions are Pr and Pg . This equation is unsur-

prisingly practically intractable, but a more useful form of it can be obtained using the Kantorovich-Rubinstein 
duality16, which gives

where F  is the set of all 1-Lipschitz functions. Practically speaking, using W
(
Pr , Pg

)
 as the distance measure for 

training a GAN will modify the min–max objective function (Fig. 1) to become

An important note here is that the discriminator D is constrained to be 1-Lipschitz, which can be thought of as 
forcing the high-dimensional analog of the “slope” of D with respect to its network parameters to be no greater 
than 1. Arjovsky et al.16 originally implemented this constraint by “clipping” the weights of D to be within a 
certain magnitude, but this can lead to undesirable training instability. As such, we utilize WGAN-GP in our 
model, an improved version of the WGAN introduced  by17 that instead enforces the 1-Lipschitz constraint by 
adding a gradient penalty term

to the objective function, where x̂  are sampled from the straight line between points sampled from Pr and Pg 
and � is a constant hyperparameter. Essentially what this added term does is instead enforce the aforementioned 
constraint by penalizing the size of the gradient of D with respect to its input, which gives improved training 
performance.

We can now write the total loss function Ltotal for our model as the sum of individual loss components, as

where:

Lmask is the L1 (Manhattan) distance between the coarse prediction for the masked region and the correspond-
ing region of the ground truth, added to the same for the fine prediction,
LFOV is the L1 distance between the coarse prediction for the non-masked part of the image and the corre-
sponding ground truth, added to the same for the fine prediction,
LWGAN ,G and LWGAN ,D are the WGAN losses between the local and global discriminators and the two-stage 
generator (see Eq. 3), with LWGAN−GP being the added gradient penalty (GP) terms for both discriminators 
(see Eq. 4).

Finally, αmask ,αFOV  and αGAN are loss weights for each of their respective loss components, and � is the 
same WGAN-GP constant of Eq. (4). We set these hyperparameters to the values recommended by Yu et al.9 
of 1.2, 1.2, 0.001, and 10, respectively. Note that these L1 losses also utilize the spatial-discounting weighting for 
pixels within the masked region of Yu et al.9, where the weight multiplying a given pixel value within the loss is 
0.99l , with l  being the distance of the given pixel to the nearest known pixel outside of the mask. In effect, this 
is meant to account for the intuitive lesser ambiguity of pixels near the mask boundary than that of pixels near 
the mask center.

(1)W
(
Pr , Pg

)
= infγ∈�(Pr ,Pg)E(x,y)∼γ

[∣∣∣∣x − y
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(2)W
(
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[
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]
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[
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]
,
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G
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D∈F

Ex∼Pr [D(x)]− Ex∼Pg [D(x)].
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(
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2
− 1
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(5)Ltotal = αmaskLmask + αFOVLFOV + αGANLWGAN ,G + LWGAN ,D + �LWGAN−GP ,
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In the training phase, patches of size 256 × 256 or 512 × 512 pixels were sampled randomly from the original 
images. Then, each patch was covered with a square-shaped mask of pre-determined side length ranging from 
16 to 128 pixels. The mask was applied to a random position within the patch field of view. The patch cropping 
process was conducted in a way that guaranteed overlap of the patches with breast tissue, which was achieved 
by thresholding non-zero pixels within the random patch choice.

The model was trained with the Adam  optimizer18 for 2,000,000 iterations and learning rate of 0.0001 with a 
batch size of 9. The parameters were chosen empirically based on results on the validation set.

Measuring quality of image completion for a single patch. Once a patch is removed and inpainted 
by our network, one needs to assess the quality of the replacement. While different metrics could be constructed 
for this, we relied on two. The first was mean squared error (MSE) and the other was the discriminator loss. 
The discriminator loss describes the consistency of a filled region within the context of the entire input image 
according to the discriminator network in the GAN (Fig. 1), but its absolute value cannot be compared between 
different models, datasets, and stages of the model training process. However, a given model can be applied to 
different images to assess and compare how much a completed image resembles the data that was used to train it 
(a normal DBT image in this case). Finally, we also measure the product of the MSE and discriminator loss. We 
will refer to this metric in the further part of this paper as DMSE.

Identifying abnormalities by measuring image completion quality across entire images. Our 
hypothesis was that, given some test image, the locations/regions for which our algorithm have more difficulty 
with correctly completing are more likely to contain an abnormality. As such, to attempt to discover abnormali-
ties within some image, we repeatedly remove parts of the image, inpaint them using our network, and measure 
the error across the entire image. Specifically, to measure the quality of image completion we used a sliding 
window approach with a shift value equal to 8 pixels. With every shift we (1) extracted a patch from the original 
image based on the current position of the window, (2) masked the center part of the extracted patch, (3) gener-
ated the missing part of the patch, and (4) measured and saved the computed error metric (MSE, discriminator 
loss, or DMSE) in a corresponding place on the abnormality heatmap. Figure 4 demonstrates the process of 
heatmap generation for the DMSE metric.

In addition, we also computed averaged heatmaps, described as follows. The process starts with creating a 
heatmap of the size of the original image, filled with zeros. After computing the loss for some patch, instead of 
saving it as a single value, we add the loss value to each pixel included within the patch to the corresponding 
location in the output heatmap. Because the slicing window can cover the same pixels multiple times, the pixels 
in the final output are divided by the number of times that were included, hence our referring to the heatmaps 
as “averaged”.

Evaluation of image completion in the context of detecting abnormalities. After generating 
heatmaps for every example in the test set, we measured averaged errors for locations inside and outside of 
radiologist-provided bounding boxes that indicate abnormalities within the set. If our approach is able to dis-
criminate abnormal locations from normal ones, the image completion error will be notably higher for locations 
which include abnormalities than for normal locations. We consider only pixels inside of breast tissue (excluding 
background pixels with intensity value equal to zero). Also, since only the middle part of a patch is masked for 
completion (to ensure sufficient context for the model), areas of the input images close to the edges are not rep-
resented in the generated heatmap. The extent of this padding area depends on the field of view and mask size.

We note that although our method was only evaluated on test set images with known lesions, the lesions 
usually only comprised a small section of each test image. As such, the non-lesion surrounding regions of the 

Figure 4.  Heatmap generation with sliding window for DMSE metric.
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test images are just normal breast tissue, and in this way, our algorithm was tested on both normal and cancer-
ous tissue.

Results
Image completion. We provide visual references to compare image completion quality between different 
masks and model input sizes (fields of view, or FOV) for images from the normal set (Fig. 5) and cancer set 
(Fig. 6 and 7). Masks and fields of view are marked on the images as smaller and larger rectangles respectively. 
The part of the image covered by the mask was completed based on the remaining part of the FOV patch.

One can see that our approach is capable of generating realistic completions of breast tomosynthesis images 
including objects such as veins. However, once the removed patch becomes larger, the fidelity of the reconstructed 
object decreases. In images with unusual objects that are not lesions, when the removed patch fully covers the 
unusual object, the network did not accurately reconstruct the removed part. As expected, it replaced them with 
normal-looking tissue (Fig. 6). However, if part of the unusual object (such as a skin marker) was included in the 
field of view and outside of the removed patch, the network reconstructed the unusual object fairly accurately. 
This phenomenon was observed for normal and cancer images.

Figure 5.  Image completion results for patches containing tissue, breast skin, veins, and nipples.
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Abnormality detection. Results for abnormality detection in terms of the mean ratio between heatmap 
values inside and outside of the ground truth bounding boxes and its standard deviation are given in Table 2. The 
table shows that the combination of MSE and discriminator loss (DMSE) outperforms the individual metrics, 
whereas MSE performed better than the discriminator loss. The highest value was obtained for the field of view 
of 256 × 256 pixels with the mask size of 128 × 128 pixels.

Figures 8 and 9 contain visualizations of non-averaged and averaged heatmaps, respectively, for the same 
subject with three separate cancer masses marked by bounding boxes. For the presented examples, the combined 
error metric diminishes error in areas outside of the bounding boxes as compared to error measures based solely 
on either MSE or discriminator loss.

Conclusions and discussion
In this study, we used deep learning-based image completion to identify abnormal locations in digital breast 
tomosynthesis images. The topic is of high importance because for mammographic cancer detection–as well as 
many other medical imaging tasks–the availability of abnormal images is very limited and as such, an efficient 
use of abundantly available normal cases is crucial.

We obtained very realistic results in terms of image completion in DBT images. We showed that the trained 
model is able to reproduce structures like fibroglandular tissue, skin, and vessels. The covered part was completed 

Figure 6.  Image completion for patches containing clips, calcification, markers, and calcified veins.
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with a likely patch from a model based on its surroundings in normal locations and it does not generate unusual 
objects like postoperative clips or calcifications. When it comes to completing cancerous regions, the results 
depend on which part of the image in question is masked and completed. If a major part of a cancerous mass or 
architectural distortion is not covered, the model may reconstruct an abnormality but still produce loss higher 
than average. We have shown that there is a possibility that this approach can be used in abnormality detection.

In our experiments, we used MSE and discriminator losses in order to describe how well the image was 
completed. Based on our observations, MSE gives high error values for abnormal objects, e.g. post-operation 
clips, but also for normal tissue with complex structures such as nipples. On the other hand, we observed that 
discriminator loss is small while completing all kinds of shapes which were present in the training set, including 
nipples. Unfortunately, modest values from discriminator loss for completing parts of abnormal images make 
it difficult to clearly classify tissue as normal or abnormal based on that metric. The results from our study have 
shown that the combined loss of MSE and discriminator loss worked best. This metric gave high loss value to 
abnormal patches without being sensitive to sophisticated shapes present in the training set of normal cases.

From the mean ratio values of Table 2 (as well as Figs. 8 and 9), it is clear that the generator cannot inpaint/
predict masks over cancerous regions nearly as accurately as that over normal breast tissue. This is to be expected, 
because the GAN was trained on thousands of scans of normal breast tissue, yet never saw any abnormalities 

Figure 7.  Image completion results for patches containing cancerous masses.
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(besides the aforementioned unusual benign objects such as post-operative clips) to learn from and generalize 
to. Sampling from the tissue image distribution that the generator is attempting to approximate should only 
result in the generation of normal tissue, so it is unsurprising that the generator has difficulty with synthesizing 

Table 2.  Ratio of measured losses inside and outside bounding boxes for non-averaged heatmaps; 
DISCR = discriminator loss, std = standard deviation.

Loss type Field of view size [pixels] Mask size [pixels] Mean ratio [Std]

MSE 256 × 256 64 × 64 1.93 (0.87)

MSE 256 × 256 128 × 128 2.11 (1.01)

MSE 512 × 512 64 × 64 1.83 (1.19)

MSE 512 × 512 128 × 128 1.86 (1.12)

DISCR 256 × 256 64 × 64 1.47 (0.38)

DISCR 256 × 256 128 × 128 1.46 (0.34)

DISCR 512 × 512 64 × 64 1.48 (0.63)

DISCR 512 × 512 128 × 128 1.47 (0.65)

DMSE 256 × 256 64 × 64 2.54 (2.92)

DMSE 256 × 256 128 × 128 2.77 (1.79)

DMSE 512 × 512 64 × 64 2.23 (4.33)

DMSE 512 × 512 128 × 128 2.11 (2.68)

Figure 8.  Non-averaged heatmaps for a patient with cancerous masses.
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cancerous tissue, even if the surrounding context of the scan is that of a cancerous breast. Conversely, we see that 
when our model is used to reconstruct normal regions of breast scans that do not include any cancerous tissue/
bounding boxes (the majority of the shown test images, as the lesions are small compared to the scale of the 
entire scans), the DMSE loss (our best-performing metric) is noticeably smaller than in the cancerous regions, 
on average, showing that normal regions can still be differentiated from cancerous within the output heatmaps. 
This is because the DMSE loss is proportional to the discriminator loss, which describes how real the discrimi-
nator judges the generated tissue to be, compared to the ground truth tissue. Because the discriminator is only 
trained to discriminate between realistic and non-realistic normal tissue, and the generator can only perform 
poorly and unrealistically when reconstructing regions with abnormalities, this loss is indeed greater for such 
cancerous regions. As such, the usage of the discriminator provides a further refinement to the loss metrics that 
are used to indicate abnormalities, explaining why the DMSE metric performed best.

We note that in order to provide classification metrics for our method such as accuracy or ROC (receiver 
operating characteristic) curves, we would first need to define exactly what a “detection” of cancerous/abnormal 
tissue is in the context of the generated heatmaps (Figs. 8 and 9). This would require choosing some numerical 
threshold for the pixel values of the inpainting error/DMSE (Table 2), such that if the error for some pixels/
region was greater than this threshold, this region could be described as being detected to be abnormal. In turn, 
we could compare these error values to known lesion bounding boxes (or use the ratio of error between inside 
and outside the boxes, as in Table 2) to obtain metrics such as the true positive rate (TPR). However, doing this 
properly would require further research and experimentation, including questions of the definition of detected 
regions, overlap criteria, postprocessing and false positive reduction and other questions that we believe are 
beyond the scope of this work which focuses on the concept of image inpainting.

GANs have proven to be useful in a range of applications, including realistic facial image creation and cus-
tomization (e.g.19, image-to-image translation (e.g.20, and even lesser-known applications such as excising rain 
from  images21 among others. More particularly related to our method, GAN-based inpainting itself has also seen 
wide use for a variety of applications, from the conversion of 2D images to 3D  representations22, to temporally 

Figure 9.  Averaged heatmaps for a patient with cancerous masses.
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consistent video completion/inpainting23, to automatic face-anonymizing for  privacy24. The use of GANs for 
abnormality detection is not nearly as common as the aforementioned trend of using GANs for other purposes. 
However, works such as Herent et al.25, Cao et al.26, Kooi et al.27, Yap et al.28 and Yap et al.29 also use deep learning 
for breast lesion detection (e.g., lesion type classification, object recognition and/or segmentation), but they rely 
on the direct, supervised learning of the appearance of real breast lesions, and as such are distinctly different from 
our semi-supervised, normal data-based GAN method. Despite this, there is still a group of other generative 
modeling-based lesion/abnormality detection methods that can be compared to ours.

Benson & Beets-Tan30 introduced a method that uses GANs (but with a different inpainting algorithm) to 
learn the data distribution of normal brain scans and perform inpainting on a grid of masks over the input image, 
like our method. In this experiment, the sum of the pixel-wise inpainting residuals within each mask are used to 
indicate abnormalities mask-by-mask (if this sum is above a certain numerical threshold),this is essentially the 
same as our method, just with slightly different masking techniques that create the final outputted abnormality 
heatmap. Li et al.31 proposed a method that is also similar in practice to ours and that of Benson & Beets-Tan, 
insofar that input test images are divided into mask regions, which are then each separately inpainted one-by-
one, after which an anomaly heatmap is generated according to the discrepancy between the original image and 
the reconstructed image. This model, although originally designed for visual anomaly detection in the context 
of industrial inspection, is essentially the same idea as our method, with the one difference being that it utilizes 
encoder-based, rather than the more advanced GAN-based inpainting used in our study.

The advantage of our model is that we do not have to rely on limited cancerous image data. Instead, we train 
on the abundance of normal scans, a philosophy that certain similar studies share. Chen et al.13 also uses an 
adversarial (but auto-encoder) approach to learning the distribution of healthy brain tissue, by learning the map-
ping of the input scan to some latent space and detecting anomalous scans within this space itself. Schlegl et al.10 
similarly uses a DCGAN-based architecture (as well as an encoder) to learn the latent space representation and 
generative process for normal anatomical image data such that at test time, unseen images are mapped to this 
latent space, and if anomalous, will be noticeably different from their reconstruction, which is found by mapping 
back from the latent space representation. From here, anomalous regions within the input are detected based 
on this discrepancy, including both reconstruction and discriminative losses. These methods are similar to ours 
because of the training on non-anomalous data to learn the distribution for such data. However, there are two 
main differences when compared to our work. The first is that these works perform image reconstruction using 
latent representations of data, not with inpainting/direct image completion. The second difference is that at test 
time, our method performs reconstruction of some masked region using the surrounding non-masked region 
as input to the network (not viewing the covered region to be reconstructed), while these methods are applied 
to reconstruct entire images, not patches, of which the networks use the entire image as input, not excluding 
anything to be used in inference, which is distinctly different than our method.

Just as our model does, the two methods of the last paragraph can be used to produce abnormality heatmaps 
similar to Figs. 8 and 9. However, it is important to note that in the case of the first, auto-encoder-based model, 
the authors state that the reconstruction quality is predicated on the input image being downsampled to a 32 × 32 
resolution. Doing such for our data would drastically reduce the quality of our very high-resolution DBT scan 
images (even in the training phase, as this uses 256 × 256 inputs), which could produce unforeseen consequences 
within the training procedure and testing inference. Therefore, in order to compare this method to ours, we would 
have to use it in a way that it was not intended or downsample our data by a factor of 64 which would dramatically 
degrade its quality. Similarly, the second method (f-AnoGAN) is built with a DCGAN/WGAN architecture that 
is designed to have stable training specifically for 64 × 64 images. While this resolution is greater than 32 × 32, 
either drastically downsampling our input to this resolution, or augmenting the network to accept a larger input, 
could produce unwanted training issues, or test inference/heatmaps that are not necessarily valid to compare 
with ours. Alternatively, one could imagine using these methods along a “grid” of disjoint partitions of the input 
test image, to preserve global test image resolution, but this could potentially result in issues with global cross-
partition coherence and consistency. In summary, directly comparing our model to these two models, which are 
built for lower-resolution images, would likely require considerable further research and development before we 
obtained results that we are confident in, and as such, this is also beyond the scope of this proof-of-concept work. 
This reason and the argument outlined in the previous paragraph are the main points for why our method is not 
immediately reasonable to quantitatively compare to other techniques; in other words, methods with which we 
can reasonably compare to do not exist.

Our study has certain limitations. First, the number of positive cases in the test set was small. However, it 
was sufficient to provide a good overview of the algorithm’s performance, on both normal tissue (image regions 
without legions) and cancerous tissue. Second, the dataset used for evaluation did not contain annotations for 
all kinds of abnormal objects, e.g. post-operation clips, which did not allow us to provide detailed performance 
estimation of detection quality. Moreover, the range of tested sizes for the field of view parameter was limited to 
what we considered reasonable and computationally feasible but larger range of values could be considered in 
future studies. Another limitation of our approach is that it identified unusual locations in the images that were 
not cancerous. This could be potentially addressed by oversampling such structures during the training. Our 
approach was also limited by computation time to generate heatmaps since those required thousands of model 
runs per image. Finally, our no-padding approach leads to omitting boundary parts of the image during detection.

In summary, we showed promising results on how to effectively use data without objects of interest for detec-
tion of abnormalities in medical images. Our approach could be further refined via a number of approaches, 
such as by combining it with fully supervised methods in order to improve performance of object detection with 
a scarce training signal.
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